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Applications of remote sensing data from satellite, aerial and unoccupied instrument platforms 

have been rapidly growing in different areas of ecological monitoring. Coverage of large spatial 

extents and possibility of repeated observations make this technology cost-effective compared to 

extensive field surveys. Opening access to some of the global satellite archives (such as Landsat [1]) 

as well as advances in open-access image processing platforms, such as Google Earth Engine [2] have 

made these opportunities more accessible and computationally efficient for a wide range of users. 

This potential is of special interest to ecosystems with high biodiversity potential but difficult field 

access and sensitive, heterogeneous environments, such as wetlands and riparian systems, which have 

been globally threatened and disappearing at alarming pace [3]. However, wetland monitoring efforts 

have been somewhat slow to adopt remote sensing-based monitoring and incorporate these novel 

possibilities on a regular basis [4,5]. The purpose of this paper is to review the key remaining 

challenges presenting major “bottlenecks” in wetland remote sensing analyses and to discuss how 

they can be addressed using some of the recent methodological and technological innovations to 

support monitoring of these complex environments.  

Remote sensing applications in wetlands and riparian systems to date have enabled a wide suite 

of ecological indicators [4,6,7], some of which are based on the “raw” spectral reflectance values as 

fingerprint of landscape properties and vegetation status, while others are derived by mapping, i.e., 

computer-based classification of wetland surfaces into landscape cover categories or vegetation types 

of interest. The latter efforts are of particular interest to this review because they create unique 

possibilities to not only delineate wetland ecological zones and habitats, but also measure their size, 

shape, connectivity and various other metrics relevant to ecological modeling, management and 

planning [5]. However, unique ecological properties of wetland and riparian systems as land-water 

ecotones pose several challenges to their mapping from remote sensing data, limiting the overall use 

of this cost-effective technology in wetland planning, management and conservation. The structure 

of wetland landscape surfaces is often heterogeneous due to vegetation zonation and presence of fine-

scale microtopographic and hydrological gradients. Sparseness of vegetation cover and hydrological 

attenuation due to flooding can make spectral reflectance less representative of the target landscape 

categories and reduce their mapping accuracies. Finally, wetlands with periodic or seasonal flooding 

can change dramatically in their landscape properties over the course of a year and exhibit transitional 

states over vast portions of their extent. This makes it hard to delineate wetland cover types using 
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‘traditional’, static definitions and may call for alternative classification schemes, such as dynamic 

categories representing characteristic change regimes rather than static classes [8].  

Historically, these challenges have been also aggravated by limited access to high spatial 

resolution imagery, while more accessible medium- to coarser-resolution products (such as 30m 

Landsat data) cannot adequately represent wetland cover type boundaries and patch geometry (Fig.1). 

Not surprisingly, mapping studies in wetlands have reported fairly low accuracy both for the overall 

outcome and individual cover types, or “classes” (often falling below the conventional standard of 

85% [9]). These mapping challenges translate into operational barriers and limited ability to 

understand and interpret wetland change as well as to inform management and planning action based 

on the spatial information provided by the classification results.  

Another suite of important difficulties arises for validation of mapping outcomes in wetlands and 

computing mapping accuracy. Traditional approaches to mapping accuracy assessment ideally 

require sufficiently large and representative “test” samples of targeted cover type classes, and such 

samples should be different from “training” samples used by “supervised” classification algorithms 

[9]. However, wetland areas can be extremely difficult to access and survey in the field due to 

impenetrable site conditions, dense vegetation, and the need to minimize human disturbance of 

sensitive species and habitats. This may effectively restrict both the spatial scope of field surveys and 

representativeness of the field observations for quantitative validation of mapping results. 

Furthermore, smaller size of test sample sets increase the cost of test sample misclassification for the 

overall accuracy metrics [9].  

 
 

Figure 1. The effect of image spatial resolution on representation of a patchy wetland surface: a) 

Landsat satellite image (30m), b) RapidEye satellite image (5m), c) aerial photo (0.15m). 

 

Many of these limitations have been somewhat alleviated by advances in higher spatial resolution 

image products (Fig.1), where smaller dimensions of image pixels provide a closer match to ground 

entities and their boundaries, such as complex wetland patches. Historically, high-resolution products 

have been available largely as on-demand aerial photography or commercial satellite imagery with 

high cost and inconsistent revisiting, making them unfeasible for repeated monitoring. More recently, 

new opportunities have emerged for higher-resolution satellite-based datasets with high (~3-5 day) 

revisit frequency, such as open-access Sentinel-2 (part of the Copernicus program by the European 

Satellite Agency with some products as low as 10m in spatial resolution) and commercial PlanetLabs 

(based in the USA, products ≤5m spatial resolution). Finally, unoccupied aerial vehicles (UAVs, also 

broadly referred to as drones) have revolutionized the local-scale imaging applications [10], providing 

a.   b.  c.  
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unprecedented levels of spatial detail and customization flexibility for wetland monitoring at the site 

level [11]. In addition to novel capacity for detailed wetland mapping, high level of visual recognition 

in UAV data provides an alternative form of ground truth to increase sampling coverage of wetland 

sites without expanding the field surveys on the ground [11].  

However, high spatial resolution brings its own suite of challenges to the mapping workflow, 

which become especially obvious in the heterogeneous setting of wetland and riparian landscapes. 

With finer scale of pixels as “minimum mapping units” (particularly at sub-meter resolution of UAV 

images), their dimensions become much smaller than the landscape entities they are supposed to 

represent (e.g., water bodies, vegetation patches, and similar). As such, they become much more 

likely to capture local variability in color, illumination, shadows and spatial detail that may not be of 

primary interest to mapping and, in fact, might increase the risk of land cover type confusions by 

mapping algorithms [7] and the infamous “salt and pepper” speckle in image classification outputs. 

Resolving this problem may be especially difficult when data are limited in spectral information; for 

example, a number of commercial high-resolution satellite platforms (such as IKONOS, QuickBird, 

or Pleiades) collect the data largely in broadband visible and near-infrared electromagnetic regions. 

Similarly, UAV instruments that are more affordable and practical for hazardous wetland setting often 

use cameras operating in red, green and blue (RGB) regions that have limited sensitivity to nuances 

among wetland vegetation types and heterogeneous surfaces [11]. As a result, limited spectral 

richness may present barriers for distinguishing highly nuanced wetland classes such as vegetation 

community types, particularly with traditional mapping algorithms relying on spectral means and 

variances of class samples for their discrimination from the images [12].   

Overcoming these uncertainties requires updating image classification workflows in a way that 

take a fuller advantage of the progress in both remote sensing data and image processing tools. Given 

the wetland-specific mapping challenges discussed above, three areas of intervention are especially 

important: 1) informing the choice of input images to facilitate class discrimination even with 

spectrally limited products; 2) modifying minimum mapping units to increase signal-to-noise ratio 

and reduce the salt-and-pepper effect; and 3) revisiting the choice of classification (mapping) 

algorithms to enhance class recognition. Most importantly, these measures should be considered 

together as complementary opportunities that can be integrated in the same workflow.  

The choice of input images is critical for classification success because if wetland cover types 

or vegetation categories are too spectrally similar, they can be hard to distinguish even with the most 

sophisticated mapping algorithms. However, spectral similarity may change during the course of the 

year based on vegetation phenology and wetland hydrological cycles. Thus, one of the key ways to 

improve class discrimination from spectrally limited data is by strategically choosing image dates 

maximizing contrasts among different classes (Fig.2). This task can be greatly facilitated by using 

open-access satellite time series computing cloud-based processing tools such as Google Earth 

Engine [2]. Using satellite time series to determine suitable time windows can be also helpful in 

planning UAV flights to reduce their logistical burden and optimize the number of flights efficiently 

[11,12].  
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Figure 2. Example of seasonal variation in the indicator of vegetation greenness, Normalized 
Difference Vegetation Index, computed from Landsat data for pixels representing different landscape 

types in California, USA’s San Francisco Bay-Delta estuary. 
 

The choice of minimum mapping units is another important consideration in wetland mapping, 
where traditionally used pixels have been criticized for insufficient representation of class contrasts 
in heterogeneous wetland setting and excessive local spectral variability reducing the quality of 
mapping [7,8]. An extremely promising methodology to overcome these challenges is the object-
based image analysis (OBIA) which instead of pixels uses small multi-pixel image regions, or 
“objects”, as minimum mapping units [7,14]. In OBIA workflows, objects are first delineated from 
the raw imagery using some of the many available image segmentation methodologies, and then 
classified into target landscape categories using the same types of algorithms as in pixel-based 
analyses – from stepwise threshold-based workflows to supervised algorithms utilizing training 
samples of classes for classification decisions. Two major advantages of OBIA in wetland setting are: 
1) the possibility to reduce spectral noise by averaging spectral information at the object (image 
region) level (Fig.3), and 2) the opportunity to include not only spectral values, but also object shape, 
internal spectral variability (texture) and contextual attributes (e.g., spatial relationships with other 
objects or classes) as a basis for distinguishing landscape classes. 

 
 

Figure 3. Example of a pixel-based and object-based wetland mapping from high-resolution imagery. 
Colors in b) and d) represent water (blue), green vegetation (green) and senescent vegetation/bare soil 

(yellow). 

 

a. Aerial photo  b. Pixel-based mapping c. Segmented objects d. Object-based 
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However, although OBIA has been applied in wetlands for almost two decades [7], its use still shows 

remaining challenges that hinder more widespread applications. Historically, a major barrier has been 

limited accessibility and high cost of the proprietary OBIA software, which have become easier with the 

development of image segmentation tools in other popular remote sensing and geospatial software, both 

commercial packages such as ArcGIS (Esri Inc.) and open-access platforms including QGIS, spatial 

toolboxes in R Studios and Python-based tools, and more recently Google Earth Engine [15]. 

Nevertheless, more fundamental practical challenges result from the need to choose and parameterize an 

appropriate segmentation algorithm, which can be much harder in heterogeneous wetland setting than, 

e.g., in human-dominated landscapes with distinct object typologies (such as buildings, trees, or land 

parcels). However, performing segmentation becomes much easier once this step no longer pursues a full 

capture of landscape entities with object units but rather aims to generate smaller, “primitive” objects that 

average local noise and provide relevant mapping units for subsequent classification [7,8], where full class 

boundaries are recovered by merging of classified objects.  

This possibility leads to the final key intervention – choosing the best-performing image 

classification algorithms capable of accurate cover type recognition despite high spectral heterogeneity 

of wetlands and low spectral richness of some data. These issues can be handled by the novel machine-

learning classification algorithms which often enhance class recognition capacity, while relaxing some of 

the limiting assumptions of traditional likelihood-based methods [7,8,16]. Although various algorithm 

families utilize different principles (e.g., artificial neural networks, decision trees, support vector 

machines), a common aspect among them is the ability to iteratively “learn” how to distinguish classes 

based on based on properties of the provided training examples. Such learning is typically accomplished 

by the repeated, automated adjustment of the algorithm parameters with the goal to minimize the error 

between predicted and actual class identities. The use of machine-learning algorithms has been greatly 

facilitated by their inclusion in geospatial software packages as well open-access computational toolkits 

(e.g., R, Python, Weka, etc.). Wetland studies comparing such methods to traditional classifiers report 

substantially higher accuracies, often exceeding 90%, especially when combined with OBIA [7,8]. 

Notably, however, these successes have not been universal, and no clear consensus has been yet 

established on which methods deliver most superior results in wetlands. The reasons behind such non-

uniform performance are also rarely discussed, sometimes attributing this to the “black box” nature and 

complexity by design. This gap clearly highlights the need for more research to determine how specifically 

these methods should be chosen and applied, and what steps can ensure greater confidence in conclusions 

about their performance in a given wetland mapping task. In particular, two important under-discussed 

aspects of algorithm use call for more attention: 1) parameterization of methods, and 2) cross-validation, 

or some other form of intermediate performance assessment. Parameterization refers to selection of 

method parameters that may affect its ability to distinguish landscape classes from training samples. Such 

parameters are method-specific and typically require some preliminary sensitivity analysis to optimize 

their values for a given mapping problem. For example, the Random Forest algorithm needs the initial 

number of decision trees to develop from training data and subsequently average; support vector machines 

require decisions about the acceptable margin of error, penalty for misclassification and mathematical 

shape of the decision boundary, among other factors. Simply guessing such parameters or using software 

defaults is not sufficient and requires a formal sensitivity analysis of their combined effects. Intermediate 

assessment of accuracy performance provides an initial sense of algorithm performance and, in addition 

to guiding parameterization, can also elucidate the quality of training information and potential needs for 

additional samples. In wetland remote sensing applications, these measures are still less common, and 

more research is needed on how to guide such steps and make them easier to implement in practical 

mapping and monitoring.  
In summary, advances in instruments, image products and computation tools create novel 

opportunities to enhance multiple aspects of wetland and riparian ecosystem mapping and facilitate 
assessments of their landscape indicators. Such enhancements can be applied collectively; for example, 
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multi-date images can be used as inputs to OBIA workflows where objects generated by the segmentation 
of such multi-date imagery are classified with machine-learning algorithms, and automated workflows 
can be applied with less intensive adjustments to other points in time or space. Importantly, this potential 
as well as progress in high-resolution customizable UAV imaging cannot completely replace the value of 
field surveys and ground truthing; however, they can help reduce the scope of the required field surveys 
and make them more strategic. Finally, although these opportunities are especially relevant to limited-
access wetland environments, they are not limited to those and could be tested and further developed in 
future research for a variety of other ecosystems and monitoring objectives.  
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