

**Матеріали XXV Міжнародної науково-практичної конференції
«Екологія. Людина. Суспільство»
пам'яті д-ра Дмитра СТЕФАНИШИНА
(12 червня 2025 р., м. Київ, Україна)**

**Proceedings of the XXV International Science Conference
«Ecology. Human. Society»
dedicated to the memory of Dr. Dmytro STEFANYSHYN
(June 12 2025, Kyiv, Ukraine)**

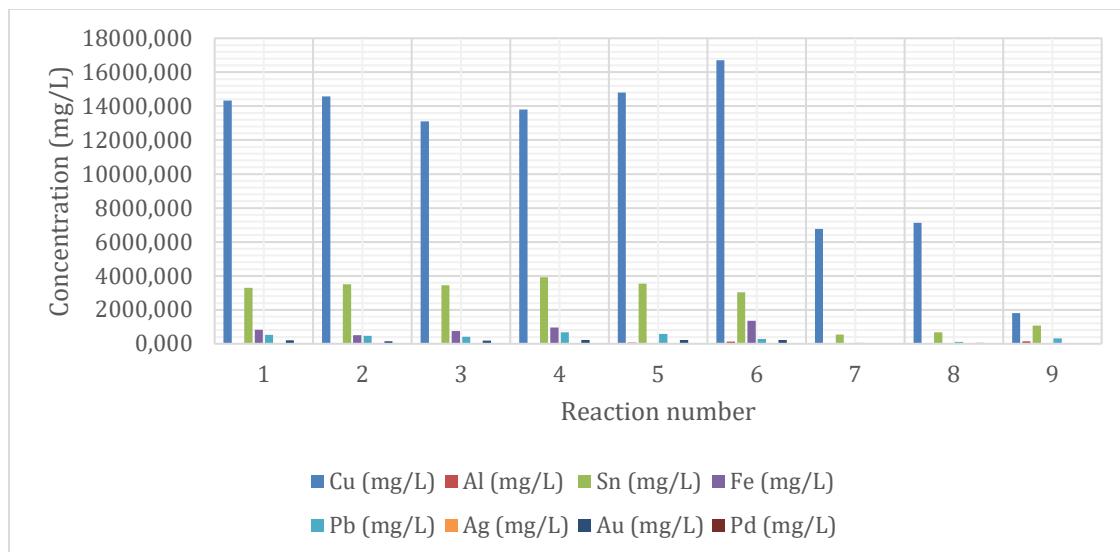
ISSN (Online) 2710-3315

<https://doi.org/10.20535/EHS2710-3315.2025.329571>

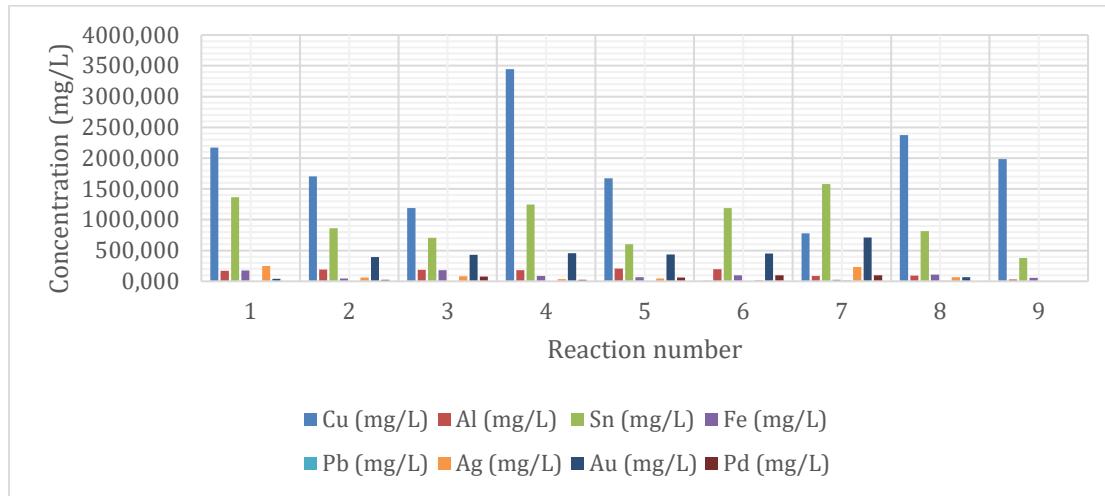
HYDROMETALLURGICAL METAL EXTRACTION FROM PCBs

**Gvidas JOKUBAUSKAS, Egidijus GRIŠKONIS,
Remigijus IVANAUSKAS, Gintaras DENAFAS**

*Kaunas University of Technology
Radvilėnų pl. 19, LT-50254, Kaunas, Lithuania
e-mail: ctf@ktu.lt*


Abstract

There are many valuable metals hidden inside printed circuit boards (PCBs for short), such as copper, aluminum, lead, iron, tin, and even noble metals like gold, silver, and platinum. To be exact, approximately 49% of all metals in PCBs are copper, 21.8% zinc, 11.6% iron, 6.5% nickel, 5.5% aluminum, 1.9% lead, 1.7% tin, 1.5% silver, 0.5% chromium, 0.1% gold, and less than 0.1% palladium. As technology advances rapidly, old devices are being discarded, yet only about 17.4% of all electronic waste was officially recycled in 2019 [1]. This leads us to believe that roughly 82.6% of all electronic waste was left untreated. This also includes PCBs, which (depending on the production year and manufacturer) can contain approximately 340 g of gold, 3.5 kg of silver, 140 g of palladium, and 130 kg of copper per ton of PCBs [2]. These numbers quickly add up, and many of the lost metals can heavily pollute the environment — including soil and water — if not properly treated. One of the ways to treat and extract these metals is by using hydrometallurgy (metal extraction using aqueous solutions) [3]. It is still widely used to extract various metals, either selectively or broadly. The entire process consists of three main stages: selective leaching, solution purification, and recovery of specific elements (usually via precipitation). In this study, we focus on extracting metals from waste using different acids and reagents. We decided to test traditional methods (such as Aqua Regia and Piranha Solution) and compare them to less commonly used alternatives (such as thiosulfate and salt solutions). Aqua Regia usually consists of 3 parts concentrated HCl and 1 part concentrated HNO₃. It is capable of dissolving noble metals like gold and silver. Piranha solution consists of 3 parts concentrated H₂SO₄ and 1 part H₂O₂. Other less common methods used in this work include: Salt solution, consisting of 10 parts saturated NaCl solution, 1 part concentrated HCl, and 2 parts concentrated H₂O₂.


Key words: hydrometallurgy, PCB, noble metal extraction, metal extraction, aqua regia, salt solution, electronical waste treatment.

We have decided to use old mobile phone shredded PCB's and 4 different reaction types: Aqua Regia with 0.09 – 0.18 mm fraction, and other 5 reactions with 0.72 – 1.6 mm fraction (Aqua Regia, Piranha solution, Salt solution). Also, we were changing the circumstances of the reactions: different time intervals (10, 30, 60, 120 minutes), different temperature intervals (50 °C and 70 °C) and ultrasonic sound usage to test, whether that will improve or decrease the extraction. The solutions then diluted, filtrated and ICP tests were conducted. For every reaction we took approximately 2.00g

of PCB's 1 reaction was held 10 min at room temperature, 2 reaction 30 min at room temperature, 3 reaction 60 min at r.t. and 4 reaction 120 min r.t., 5 reaction was conducted at 50 $^{\circ}\text{C}$ for 60 min, 6 reaction was conducted at 70 $^{\circ}\text{C}$ for 60 min. 7 reaction was conducted at room temperature, 60 mins with bigger volume of reagents (twice as big), 8 reaction was conducted at 60 $^{\circ}\text{C}$, 60 mins with ultrasonic sound with bigger volume of reagents (twice as big) and 9 reaction was conducted at 60 $^{\circ}\text{C}$ without ultrasonic sound with bigger volume of reagents (twice as big). Based from figure 1, the copper extraction was better at higher temperatures, although the longer we held the solution, the bigger the tin concentration was. The ultrasonic sound, again, seemed to not improve extraction. The silver was barely present in the results, since it sedimented as AgCl.

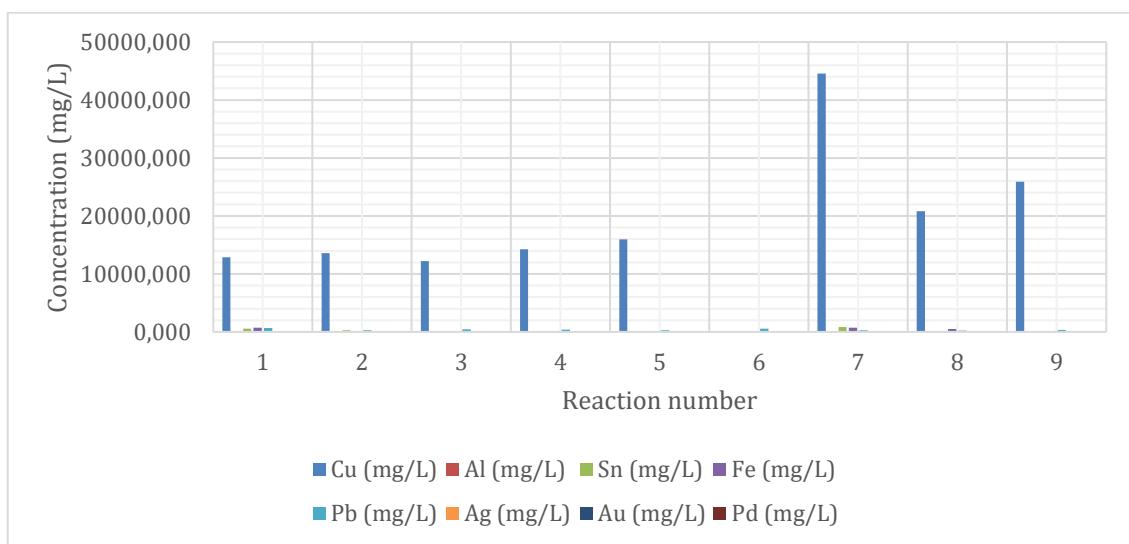
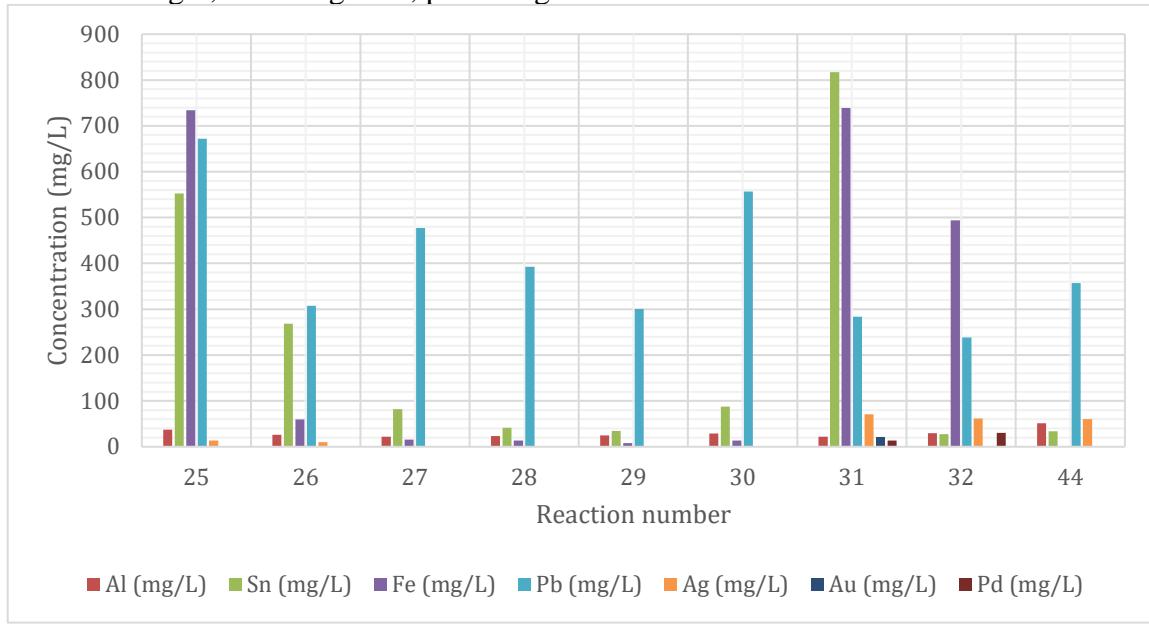
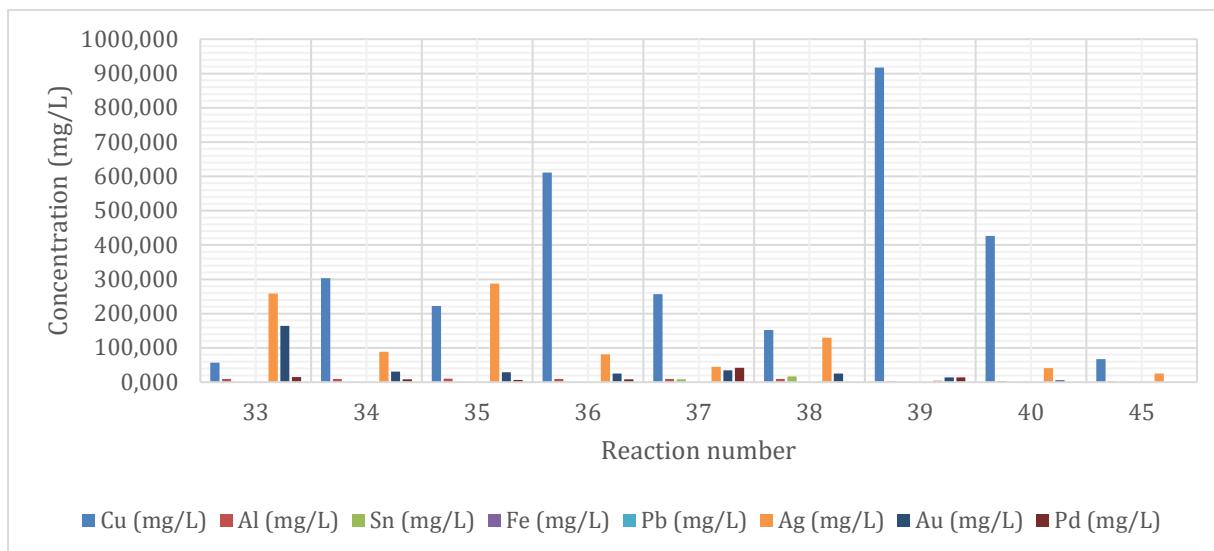


Fig. 1. Aqua Regia reaction results with 0.72 – 1.6 mm fraction PCB's


Fig. 2. Piranha solution results with 0.72 – 1.6 mm fraction PCB's

Using the Piranha solution, it was visible, that the solution started dissolving organic material, since thick "goo" got stuck on glassware during the reaction. However, Piranha solution got better gold leaching results than Aqua Regia, based on these results. Here we can also monitor, that extending reaction time doesn't add big significance. However this time, we got some better results using ultrasonic sound.


Fig. 3. Salty solution results with 0.72 – 1.6 mm fraction PCB's

Based on figure 3, we can see, that the copper concentration was increased heavily, this time, ultrasound usage was effective, but not as effective as just increasing volume of reagents. For better other element insight, theres figure 5, providing better view of other elements.

Fig. 4. Salty solution results with 0.72 – 1.6 fraction PCB's (without Cu)

Based on figure 4, we can see, that heat only improved lead extraction by a little bit. The solutions got cloudy, which could indicate, that some elements created non soluble salts. Our guess would be that most of the gold and silver are there (Although with the help of ultrasonic sound we managed to get some fractions of silver in the solution).

Fig. 5. Thiosulphate reaction results with 0.72 – 1.6 mm fraction PCB's

As seen in Figure 5, silver concentration is the biggest amongst all the other reactions above. However, other metal concentrations are low or even non existant, which means that thiosulphate could be used exclusively for silver leaching.

Recomendations for further studies about these reactions would be: find out more about the sediments, that occur during the salty solution reaction (what do they consist out of) as well as study, how to retrieve the metals after leaching them (either chemically or physicaly).

References

1. Prashant Ram Jadhao, Ejaz Ahmad, K.K. Pant, K.D.P. Nigam, Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication, Waste Management, Volume 118, 2020, Pages 150-160, ISSN 0956-053X, <https://doi.org/10.1016/j.wasman.2020.08.028>
2. M.C. Vats, S.K. Singh, Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article, Waste Management, Volume 45, 2015, Pages 280-288, ISSN 0956-053X, <https://doi.org/10.1016/j.wasman.2015.06.002>
3. M.C. Vats, S.K. Singh, Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article, Waste Management, Volume 45, 2015, Pages 280-288, ISSN 0956-053X, <https://doi.org/10.1016/j.wasman.2015.06.002>
4. 10. Copyright, Editor(s): Michael Nicol, Hydrometallurgy, Elsevier, Volume 1, (2022a), ISBN 9780323993227, <https://doi.org/10.1016/B978-0-323-99322-7.12001-0>
5. 11. Copyright, Editor(s): Michael Nicol, Nicholas Welham, Gamini Senanayake, Hydrometallurgy, Elsevier, Volume 2 (2022b), ISBN 9780323992145, <https://doi.org/10.1016/B978-0-323-99214-5.12001-7>

ГІДРОМЕТАЛУРГІЙНЕ ВИДОБУВАННЯ МЕТАЛІВ З ДРУКОВАНИХ ПЛАТ

Гвідас ЙОКУБАУСКАС

Каунаський технічний університет, Литва
Radvilėnų pl. 19, LT-50254, Kaunas, Литва

Егідіюс ГРІШКОНІС

Каунаський технічний університет, Литва
Radvilėnų pl. 19, LT-50254, Kaunas, Литва
<https://orcid.org/0000-0002-3426-6857>

Ремігіюс ІВАНАУСКАС

Каунаський технічний університет, Литва
Radvilėnų pl. 19, LT-50254, Kaunas, Литва
<https://orcid.org/0000-0002-2982-8931>

Гінтарас ДЕНАФАС

Каунаський технічний університет, Литва
Radvilėnų pl. 19, LT-50254, Kaunas, Литва
<https://orcid.org/0000-0002-6834-1026>

Анотація

Усередині друкованих плат (скорочено PCB) приховано багато цінних металів, таких як мідь, алюміній, свинець, залізо, олово, а також дорогоцінні метали — золото, срібло та платина. Якщо бути точними, приблизно 49% усіх металів у друкованих plataх становить мідь, 21,8% — цинк, 11,6% — залізо, 6,5% — нікель, 5,5% — алюміній, 1,9% — свинець, 1,7% — олово, 1,5% — срібло, 0,5% — хром, 0,1% — золото, і менше ніж 0,1% — паладій. Зі стрімким розвитком технологій старі пристрої масово виводяться з експлуатації, однак лише близько 17,4% усіх електронних відходів було офіційно перероблено (дані 2019 р.) Це дає підстави припускати, що приблизно 82,6% електронних відходів залишаються необробленими. До них належать і друковані плати, що, залежно від року виробництва та виробника, можуть містити приблизно 340 г золота, 3,5 кг срібла, 140 г паладію та 130 кг міді на одну тонну сировини. Такі кількості швидко накопичуються, і у випадку відсутності належної утилізації плат, деякі із вказаних металів можуть серйозно забруднювати довкілля — зокрема ґрунт і воду. Одним зі способів вилучення цих металів є гідрометалургія (тобто вилучення металів за допомогою водних розчинів). Цей метод досі широко використовується для видобування різноманітних металів — як вибірково, так і комплексно. Увесь процес включає три основні етапи: селективне вилуговування, очищення розчину та осадження окремих елементів (як правило, шляхом осадження). У цьому дослідженні ми зосереджуємося на вилученні металів із відходів за допомогою різних кислот і реагентів. Ми вирішили протестувати традиційні методи (такі як «царська водка» та «розчин Піранья») та порівняти їх із менш поширеними альтернативами (такими як тіосульфат та сольові розчини). Царська водка зазвичай складається з 3 частин концентрованої HCl та 1 частини концентрованої HNO₃. Вона здатна розчинити дорогоцінні метали, зокрема золото та срібло. Розчин Піранья складається з 3 частин концентрованої H₂SO₄ та 1 частини H₂O₂. Інші, менш поширені методи, використані в цьому дослідженні, включають сольовий розчин, що складається з 10 частин насыченого розчину NaCl, 1 частини концентрованої HCl та 2 частин концентрованої H₂O₂.

Ключові слова: гідрометалургія, друкована плата, видобування благородних металів, видобування металів, царська водка, сольовий розчин, переробка електронних відходів.