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Abstract

This paper presents a comprehensive approach to estimating the Chézy roughness coefficient as
a key parameter of hydraulic resistance in natural river channels. Based on the analysis of 43 well-
known empirical and semi-empirical formulae for C, as well as 13 formulae for the Gauckler—
Manning coefficient, the dependencies were systematised and classified into groups according to
hydromorphological and hydraulic parameters.

An artificial neural network (ANN) was developed to estimate the coefficient C considering key
hydromorphological factors. The model was validated using data from the Dnipro, Desna, and
Prypiat rivers; the Nash—Sutcliffe Efficiency (NSE) values ranged from 0.94 to 0.98, with relative
errors of 0.9-13.9%.

Additional testing was conducted on mountain rivers (Tysa, Teresva, Latorytsia, Opir, Rika,
Chornyi Cheremosh), where anomalous values were excluded from the training datasets, improving
prediction accuracy. It was demonstrated that the use of one- or two-layer ANNSs is appropriate when
high-quality training data are available.

To improve accuracy under limited data conditions, an ensemble model (ANN-A, ANN-B1, ANN-
B2) was implemented using the bagging method. A strategy of independent training of networks was
applied, followed by aggregation of outputs using majority voting. The testing results showed relative
discharge errors ranging from 0.3% to 6.1%, and NSE values from 0.991 to 0.998.

The study confirms the high accuracy and practical applicability of the ensemble approach for
estimating the Chézy coefficient in contexts with limited hydromorphological information.

Keywords: Chézy coefficient, hydraulic resistance, artificial neural networks, model ensemble,

mathematical modelling, river flows, hydromorphology, NSE, machine learning, hydraulic
engineering structures.
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Hydraulic resistance refers to the forces with which the riverbed or channel bed opposes the
motion of the water flow. The main factors influencing the magnitude of these forces include:
roughness elements, bedforms and other obstacles, channel bends and curvature, variability in cross-
sectional shape and size along the channel, suspended and bedload sediments, vegetation, ice
phenomena, and others.

Typically, hydraulic resistance is evaluated using integral parameters such as roughness
coefficients, Chézy coefficients, hydraulic friction coefficients, or roughness element height. The
calculation of mean flow velocities in open channels, while accounting for hydraulic resistance, is
one of the central problems in river hydraulics.

The aim of the study is to develop and experimentally validate an ensemble-based computational
model using artificial neural networks (ANNS) for estimating the Chézy coefficient under various
hydromorphological river conditions, in order to improve the reliability of hydraulic calculations and
the robustness of engineering decision-making.

The mathematical modelling of the Chézy roughness coefficient for river flow conditions is
considered using neural networks, encompassing a set of the following tasks.

1. A study of existing methods for estimating the Chézy roughness coefficient as a measure of
hydraulic resistance in river channels [1]

As part of this study, we reviewed, analysed, and systematised a wide range of well-known and
frequently cited empirical and semi-empirical formulae and relationships used to estimate the Chézy
roughness coefficient. In total, 43 such formulae were examined, along with 13 additional formulae
applicable to the estimation of the Gauckler-Manning roughness coefficient.

Based on these expressions, approximately 250 empirical equations can be constructed for
determining the Chézy coefficient as a function of river and channel hydromorphological
characteristics, hydraulic conditions, applicable ranges, and other factors.

The study resulted in the development of a general classification and systematisation of the main
empirical and semi-empirical relationships, grouped as follows:

1. formulae primarily expressing the relationship between the Chézy coefficient C and the
Manning roughness coefficient n, sometimes also incorporating the hydraulic radius or the average
flow depth;

2. formulae in which hydraulic resistance is determined based on the height of channel roughness
elements or the mean diameter of bed and bank material particles, or the height and length of
bedforms;

3. formulae that account for the effect of water surface slope and average flow depth or hydraulic
radius;

4. formulae expressing the dependence of the C coefficient on the average channel width and
hydraulic radius (or mean flow depth).

Overall, it can be concluded that there is no ideal or universally applicable method for determining
the Chézy roughness coefficient. Key challenges include uncertainties related to hydromorphological
changes associated with sediment deposition and erosion processes in natural watercourses, as well
as seasonal variations in aquatic and riparian vegetation, including floodplain dynamics.

Moreover, hydraulic resistance may vary due to the spatio-temporal variability of other hydraulic
parameters. A critical factor in the reliable estimation of the Chézy coefficient using various empirical
methods lies in the accuracy of field measurements of the input parameters used in the selected
formulae, as these strongly influence the relative error of the final calculations.
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2. Study and development of a data structure for training an artificial neural network in solving
problems related to the calculation of the Chézy roughness coefficient [2]

As part of this task, the problem of structuring the data and developing general rules for the
formation of training and testing datasets was addressed. These datasets are intended for training
artificial neural networks (ANNSs) developed to estimate the Chézy roughness coefficient, taking into
account the parametric uncertainty of input data related to hydromorphological factors and parameters
characterising hydraulic resistance in river channels.

The modelling was performed using a fully connected feedforward artificial neural network with
a single hidden layer. The network architecture consisted of two input neurons, four neurons in the
hidden layer, and one output neuron. A standard sigmoid transfer function was applied in the hidden
layer neurons, while a linear activation function was used in the output neuron. Python was employed
for network design, training, and testing.

It was proposed that both training and evaluation of the ANN for Chézy coefficient prediction
should incorporate the following key hydromorphological parameters: the Gauckler—-Manning
roughness coefficient n and water surface slope S;; average flow width B and depth h; height of bed

roughness elements Aand hydraulic radius R. It is assumed that multicollinearity among these
parameters is either absent or negligible.

Considering the interdependencies between the Chézy coefficient (C) and the identified
parameters, representative input parameters (x,, x,)and corresponding training datasets (x;, x,, C)
were prepared. Using these, the ANN computes the Chézy coefficient (C) as the dependent variable
(1), where selected combinations of input parameters x,, x, are treated as independent variables.

C = f(xy, x2). x; € {n,4,S;, B} x; € {I,R}. 1)

The separation of parameters into two characteristic groups was carried out based on the analysis
of various empirical formulae and relationships that can be used to determine the Chezy coefficient,
drawing on the findings of the previous study [1].

Accordingly, the proposed computational model (1), based on a feedforward ANN with a
sigmoidal logistic activation function, performs the approximation of continuous functions. The ANN
is trained using the backpropagation algorithm.

The structuring of the network input data (x,, x,) and training samples (x;, x,, C) involved the
construction of informative, smoothed, continuous, and normalised input data arrays, taking into
account statistical uncertainty (e.g., errors, missing measurements, etc.).

Training and testing of the ANN were carried out using current hydromorphological data from
selected lowland sections of the Dnipro, Desna, and Prypiat Rivers.

The adequacy of the proposed computational model for predicting the Chézy coefficient was
demonstrated using the Nash—Sutcliffe Efficiency (NSE) coefficient, which is commonly applied in
hydrological and hydraulic modelling and forecasting.

3. Study of the Effectiveness of Chézy Roughness Coefficient Estimation Using an Artificial
Neural Network for Supporting Mathematical Modelling of River Flows [3]

The task of calculating the Chézy coefficient was addressed using the neural network proposed in
the previous study [2], based on a limited set of field data on the hydrological and hydromorphological
characteristics of selected sections of lowland rivers — the Dnipro, Desna, and Prypiat — as well as
mountain rivers including the Tysa, Teresva, Latorytsia, Opir, Rika, and Chornyi Cheremosh.
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It was proposed that, during the stage of domain analysis and field data collection for ANN
training dataset construction, anomalous and incomplete data samples related to river reach
characteristics should be excluded from consideration.

The procedure for evaluating the ANN's effectiveness was based on comparing observed Q,and
predicted @,, water discharges (Q,were determined using the Chézy coefficient C,, estimated via the

neural network).

Predicted values obtained using training samples containing anomalous data were associated with
relative errors ranging from 3.8% to 18.1%.

The ANN trained on samples without anomalous data produced more accurate predictions, with
relative errors ranging from 0.9% to 13.9%.

4. Study of the Optimal Architecture of a Multilayer Artificial Neural Network for Estimating
the Chézy Roughness Coefficient [4]

In this task, the prediction of the Chézy roughness coefficient was performed in accordance with
computational model (1), based on the neural network previously validated in studies [2, 3]. The
investigation focused on fully connected feedforward artificial neural networks (ANNS) with one,
two, and three hidden layers.

The training and testing of the different ANN configurations were carried out using datasets on
the hydrological and hydromorphological characteristics of selected sections of both lowland and
mountain rivers, developed within the framework of studies [2, 3].

Testing various ANN architectures produced the following key results. For calculating the Chézy
coefficient within the proposed computational model, it is sufficient to use a feedforward ANN with
one or two hidden layers and a sigmoidal logistic activation function, provided that a high-quality
training dataset is available.

In the test cases based on data from [2, 3], the relative error in discharge predictions ranged from
0.9% to 13.9%, depending on the river. The Nash-Sutcliffe Efficiency (NSE) coefficient for model
performance ranged from 0.94 to 0.98, indicating a level of accuracy sufficient for practical
applications of Chézy coefficient estimation.

5. Ensemble Modelling of the Chézy Hydraulic Resistance Coefficient Using Artificial Neural
Networks [5]
The task of estimating an approximate value of the Chézy hydraulic resistance coefficient C is

considered using an ensemble of artificial neural networks (ANNS):
C(xl, xZ) = CA i d)l x1 € {n, A,Sf, B}l xz € {h; R}l (2)

where C, = f (x4, x,) —the value of the Chézy coefficient in the first approximation, calculated using
the baseline ANN (ANN-A), which was validated in our previous studies [2-4]; ¢ = f(x,x,) — @
refinement term determined using two additional ANNs (ANN-B1 and ANN-B2), developed based
on the baseline network model.

To solve problem (2), established methods from ensemble modelling theory are proposed. The
ensemble approach is based on the idea of combining several base machine learning models into a
unified structure to create a more robust composite model, which can outperform its individual
components and significantly improve prediction accuracy.

In the context of problem (2), a homogeneous ensemble of neural network models—ANN-A,
ANN-B1, and ANN-B2—was employed, along with a strategy of using independent datasets for each
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ANN. The ensemble training and the creation of data subsets for the individual network models were
carried out using the bagging (Bootstrap Aggregating) method. Accordingly, a parallel ensemble
training technique was applied for the individual ANNs using the backpropagation algorithm.

The aggregation of output data (predictions) from the ensemble components into a single
forecasted result, in accordance with computational model (2), was based on the majority voting
method, with consideration of inverse problem solutions.

Python was used for the development, training, and testing of the neural network ensemble. The
software implementation of the computational algorithms for training the ANN ensemble and
predicting the Chézy roughness coefficient is presented in [6].

For the validation of the computational algorithm for hydraulic resistance coefficient prediction
using the ANN ensemble, datasets on hydrological and hydromorphological characteristics of
selected lowland and mountain river sections, as proposed in studies [2, 3], were utilised. The testing
procedure consisted in comparing observed values Q, and calculated (predicted) values @, based on

the computed (predicted) values of the Chézy coefficient C,, obtained using the artificial neural

network ensemble.

It was shown that the relative errors of the predicted values Q ranged from 0.3% to 6.1%,
depending on the river, and the values of the Nash—-Sutcliffe Efficiency coefficient NSE were in the
range of 0.991 to 0.998.

The validation results indicate that the computational accuracy is sufficient for practical
applications and confirm the high predictive capability of the proposed ANN ensemble-based
algorithm for estimating the Chézy coefficient.

Conclusions

The accuracy of hydraulic resistance parameter estimation is critically important for solving
engineering problems related to the design of hydraulic structures and water resources management,
regardless of the selected mathematical models or computational approaches.

Given the considerable variability of hydromorphological conditions in river systems, flow
resistance varies over a wide range, directly affecting discharge capacity. In this context, the Chézy
roughness coefficient C proves to be a more representative parameter of hydraulic resistance
compared to other empirical characteristics, such as the Gauckler-Manning and Darcy—Weisbach
coefficients. Its advantage lies in the ability to reflect the combined influence of morphological and
hydrological factors.

However, no universal method for determining the Chézy coefficient C exists, and the accuracy
of its estimation largely depends on the reliability (precision) of field measurements of relevant
hydromorphological parameters in open-channel flows.

The results of Chézy coefficient modelling based on artificial neural networks have shown that,
under conditions of limited input data, the application of ensemble approaches can reduce errors and
improve the reliability of predictive estimates, helping to overcome the limitations inherent in
individual models.
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AHoTanis

VY poboTi mpeacTaBieHo KOMIUIEKCHUN MiAXiA A0 owmiHkK KoedinieHTa mopctrocti Hlesi sk kiarodoBoi
XapaKTepPUCTHKHU TiAPaBIiYHOIO OMOpPY B HMPUPOJHHX PiuKoBHX pyciax. Ha ocHoBi anamizy 43 Bigomux
eMIipHYHUX 1 HaniBemmipuyaux Gpopmyn i C, a Takox 13 popmyn s koedinienta ['oknepa—MenHinra,
OyJi0 3IiHiCHEHO CcHCTeMaTH3alilo 3aleXHOCTed Ta kiacudikamiro iX 3a TpynaMu 3alieKHO Bif
riIpoMOpQONOTIYHUX Ta TiApaBIivyHUX napamerpiB.Po3pobneno mryuny nHeliponny mepexy (LHUHM) mns
ouinku koedinienta C 3 ypaxyBaHHSIM OCHOBHHX TiApoMOpQoIoriynux napamerpis. Mozens anpoOoBaHo Ha
nanux s pidok duinpo, Hecna ta [pun’ate; koedinieHT epexrnBHOCTi Hemma—Cartkmigda (NSE) cranoBus
0,94-0,98, a BimHOCHa moxubka 0,9-13,9%./lonatkoBe TecTyBaHHs 3IiHICHEHO JuIs Tipchkux pidok (Twuca,
Tepecsa, Jlatopuns, Omip, Pika, Yopuuit Uepemorn) i3 BUKITIOYEHHSM aHOMAaJbHUX 3HAYEHb 3 HABYAIBHUX
BHOIPOK, 110 MOKPAIIMIO TOYHICTH MporHo3iB. [lokazaHo, Mo BUKOpUCTaHHS OAHO- abo nBomaposux IIHM e
JOLTBHUM IIPH SIKICHOMY HaB4aJIbHOMY Habopi.

JA71s1 miABMIIIEHHS TOYHOCTI B yMOBaX 00MEKEHOT0 00CATY JaHUX pealtizoBaHo ancam0ieBy Moaens (ANN-
A, ANN-B1, ANN-B2) 3 merogom Oerrinry. 3acToCOBaHO CTpaTeTil0 HE3aJe)KHOTO HAaBYAaHHS MEpeX i3
MOJANBIINM 00 €IHAHHAM PE3yJbTaTiB 32 MPUHLUIOM MaKCUMAJIBHOT'O TOJIOCYBaHHS. 3a pe3ylbTaTaMiu
TECTyBaHHS OTPUMAaHO BiTHOCHI MOXMOKHU BUTpaTH Bogu B Mexax 0,3—6,1% Ta 3nauenns NSE Bix 0,991 no
0,998.

Pesynprat moCHiIKEHHS MiATBEPAXKYIOTH BHCOKY TOYHICTb 1 MPaKTHYHY NPHAATHICTH aHCaMOJIEBOTO
nigxoxay Ais ominku koedinieHta [lesi B ymoBax oOMexeHoi rizpomopdororiynoi indopmarii.

Karwuosi cioBa: xoedimient Hlesi, rigpaBmiuyauii onip, IITYYHI HEHPOHHI MepeKi, aHcaMOIb MOJETIeH,
MaTeMaTHU4YHE MOJENIOBAaHHS, PiUKoBi Tewii, rizpomopdoioris, NSE, MammiHHe HaBUaHHS, TiAPOTEXHIUHI
CIIOpY M.
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